124 research outputs found

    Estimating the weight of metric minimum spanning trees in sublinear time

    Get PDF
    In this paper we present a sublinear-time (1+ε)(1+\varepsilon)-approximation randomized algorithm to estimate the weight of the minimum spanning tree of an nn-point metric space. The running time of the algorithm is O~(n/εO(1))\widetilde{\mathcal{O}}(n/\varepsilon^{\mathcal{O}(1)}). Since the full description of an nn-point metric space is of size Θ(n2)\Theta(n^2), the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost optimal as it is not possible to approximate in o(n)o(n) time the weight of the minimum spanning tree to within any factor. We also show that no deterministic algorithm can achieve a BB-approximation in o(n2/B3)o(n^2/B^3) time. Furthermore, it has been previously shown that no o(n2)o(n^2) algorithm exists that returns a spanning tree whose weight is within a constant times the optimum

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Sublinear time approximation of the cost of a metric k-nearest neighbor graph

    Get PDF
    Let (X, d) be an n-point metric space. We assume that (X, d) is given in the distance oracle model, that is, X = {1, …, n} and for every pair of points x, y from X we can query their distance d(x, y) in constant time. A k-nearest neighbor (k-NN) graph for (X, d) is a directed graph G = (V, E) that has an edge to each of v's k nearest neighbors. We use cost(G) to denote the sum of edge weights of G. In this paper, we study the problem of approximating cost(G) in sublinear time, when we are given oracle access to the metric space (X, d) that defines G. Our goal is to develop an algorithm that solves this problem faster than the time required to compute G. We first present an algorithm that in Õ∊(n2/k) time with probability at least approximates cost(G) to within a factor of 1 + ∊. Next, we present a more elaborate sublinear algorithm that in time Õϵ(min{nk3/2, n2/k}) computes an estimate of cost(G) that satisfies with probability at least where mst(X) denotes the cost of the minimum spanning tree of (X, d). Further, we complement these results with near matching lower bounds. We show that any algorithm that for a given metric space (X, d) of size n, with probability at least estimates cost(G) to within a 1 + ∊ factor requires Ω(n2/k) time. Similarly, any algorithm that with probability at least estimates cost(G) to within an additive error term ϵ · (mst(X) + cost(X)) requires Ωϵ(min{nk3/2, n2/k}) time

    A characterization of graph properties testable for general planar graphs with one-sided error (it's all about forbidden subgraphs)

    Get PDF
    The problem of characterizing testable graph properties (properties that can be tested with a number of queries independent of the input size) is a fundamental problem in the area of property testing. While there has been some extensive prior research characterizing testable graph properties in the dense graphs model and we have good understanding of the bounded degree graphs model, no similar characterization has been known for general graphs, with no degree bounds. In this paper we take on this major challenge and consider the problem of characterizing all testable graph properties in general planar graphs. We consider the model in which a general planar graph can be accessed by the random neighbor oracle that allows access to any given vertex and access to a random neighbor of a given vertex. We show that, informally, a graph property P is testable with one-sided error for general planar graphs if and only if testing P can be reduced to testing for a finite family of finite forbidden subgraphs. While our presentation focuses on planar graphs, our approach extends easily to general minor-free graphs. Our analysis of the necessary condition relies on a recent construction of canonical testers in the random neighbor oracle model that is applied here to the one-sided error model for testing in planar graphs. The sufficient condition in the characterization reduces the problem to the task of testing H-freeness in planar graphs, and is the main and most challenging technical contribution of the paper: we show that for planar graphs (with arbitrary degrees), the property of being H-free is testable with one-sided error for every finite graph H, in the random neighbor oracle model
    corecore